
Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  1 

Requirements Knowledge Model 
 

This model provides a language for communicating the knowledge that you 
discover during requirements-related activities. We present it here as a guide 
to the information you need to consider, and as a tool for communication 
between the various stakeholders on your project. The model can also serve as 
the specification for which requirements knowledge you plan to discover and 
trace. Your own process must define who gathers which information, and how 
it will be packaged and reviewed. 

Business
relevancy

Work
Scope

*

1..*

1

Project
Goal

Stake-
holder

Business
Use Case

Business
responding

*Business
boundary

1

1

Business
Event

1

Product
Use Case

1..*

Atomic
Requirement

Product
tracing

Business
tracing

** *
* *

1 Owning

Constraint Functional
Requirement

Non-functional
Requirement

Are types of

Technological
Requirement

S

Implement-
ation Unit

Supporting

Implem-
enting

System
Architecture
Component

*
* *

*

Implementing

*

*
TestTesting

*

1

Testing

**

Product
Scope

Product
partitioning

*

1

Naming Conventions
& Data Dictionary

Fact/
Assumption

 
The knowledge model identifies the classes of knowledge concerned with 
requirements and the relationships between them.  The model uses UML 
class modelling notation: a rectangle represents a class of knowledge, lines 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  2 

between classes of knowledge represent relationships, cardinality is 
represented as 1 (one) and * (many) and can be read in both directions.  
E.G. one instance of Work Scope has a Business Boundary relationship with 
many instances of Business Event  and one instance of Business Event  has a 
Business Boundary relationship with one instance of Work Scope. The 
classes and relationships are defined in detail in the knowledge model’s data 
dictionary. 
 
Note that each of the classes on the knowledge model corresponds to one or 
more of the sections in the Volere requirements template available at 
http://www.volere.co.uk 
 

Data	
  Dictionary	
  for	
  the	
  Requirements	
  Knowledge	
  Model	
  
The following is a definition of the classes and relationships on the above 
knowledge model. We have listed the relationships after the classes.  

Knowledge class: Atomic Requirement 
Purpose:  

A Requirement specifies a business need or want. A 
requirement has a number of attributes as listed below.  

Attributes: 
Requirement Number 
Requirement Description 
Requirement Rationale 
Requirement Type 
Requirement Fit Criterion 
Requirement Source 
Customer Satisfaction 
Customer Dissatisfaction 
Conflicting Requirements 
Requirement Priority 
Dependent Requirements 
Supporting Material 
Version Number 

Considerations:  
Also see the subtypes of requirement, namely Constraint, 
Functional requirement, Non-functional requirement, 
Technological requirement.  

Suggested Implementation: 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  3 

Sections 9 though 17 of the Template. There are various 
automated tools available; these allow team access to the 
requirements.  

Knowledge class: Business Event 
Purpose:  

A Business Event is some happening outside the work scope 
that is in effect a demand for some service provided by the 
work. For example, a motorist passes an electronic tollbooth, a 
customer orders a book, a doctor asks for the scan of a patient, a 
pilot lowers the landing gear.   
 
Business events can also happen because of the passage of time. 
For example, if a customer’s bill is not paid in 30 days, then it 
is time for the work to send a reminder. Or it is two months 
before an insurance policy is due to expire.  

Attributes: 
Business Event Name 
Business Event Adjacent Systems/Actors 

Considerations: 
It is important to recognize the business event. Its nature, the 
circumstances that exist at the time the event happens, the 
activity of the adjacent system at the time of the business event 
are all important indicators of the appropriate response.  

Suggested Implementation: 
This is in section 6 of the Volere Requirements Specification 
Template.  A list of the business events and their associated 
input and output flows will suffice. It is practical to give each 
business event a unique identifier.  

Knowledge class: Business Use Case 
Purpose:  

A Business Use Case (often referred to as a BUC) is the 
processing done in response to a business event. For example, a 
policyholder decides to make a claim is a business event. The 
business use case is all the processing done by the work to 
approve or deny the claim. Also see Product Use Case. 

Attributes: 
Business Use Case Name 
Business Use Case Description 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  4 

Business Use Case Input 
Business Use Case Outputs 
Business Use Case Rationale 
Business Use Case Priority 
Normal Case Scenario 
Exception Case Scenarios 
Preconditions 
Post or exit conditions  

Considerations: 
Business use cases are self-contained portions of the work, and 
can be studied independently. For this reason they are an 
important unit that project leaders can use to structure the 
analytical work.  

Suggested Implementation: 
Also section 6 of the Volere Requirements Specification 
Template. An automated tool that allows sharing of the 
business use case attributes is advisable. BUCs can be 
represented using any combination of Business process models, 
sequence diagrams, activity diagrams, scenarios or any other 
representation that is acceptable to the people involved – 
providing the BUC is within the boundaries declared for the 
Business Event. 

Knowledge class: Constraint 
Purpose:  

A constraint is a type of requirement. It is a constraint on the 
design of the product, or a constraint on the project itself, such 
as budget or time restrictions.  

Considerations: 
We treat them as a type of requirement that must be met. 
However, we highlight them, as it is important that you and 
your management are aware of them.  

Suggested Implementation: 
Section 3 of the Template.  Design constraints should be 
recorded in the same way as the other requirements. See the 
Knowledge class Requirement for the attributes.  

Knowledge class: Fact/Assumption 
Purpose:  



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  5 

An assumption states an expectation on which decisions about 
the project are based. For example, it might be an assumption 
that another project will be finished first, or that a particular law 
will not be changed or that a particular supplier will reach a 
specified level of performance. If an assumption turns out not to 
be true, then it indicates that there might be far reaching and 
unknown effects on the project. 

A Fact is some knowledge that is relevant to the project 
and affects its requirements and design. A Fact can also state 
some specific exclusion from the product and the reason for 
that exclusion.  

Fact/Assumption is a global class and could have an 
Relationship with any of the other classes in your knowledge 
model. 

Attributes: 
Description of the Assumption/Fact  
Reference to people and documents for more details 

Considerations: 
Assumptions indicate a risk. For this reason they should be 
highlighted and all affected parties made aware of the 
assumption. You could consider installing a mechanism to 
resolve all assumptions before implementation starts.  

Suggested Implementation: 
Section 5 of the Template; these can be written in free text. 
They should be regularly circulated to management and the 
project team.  

Knowledge class: Functional Requirement 
Purpose:  

A functional requirement is something that the product must do. 
For example calculate the fare, analyse the chemical 
composition, record the change of name, find the new route. 
Functional requirements are concerned with creating, updating, 
referencing and deleting the essential subject matter within the 
context of the study. 

Attributes: 
This is a sub-type of Atomic Requirement and inherits its 
attributes.  

Suggested Implementation: 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  6 

Section 9 of the Template. See the Knowledge class Atomic 
Requirement for the attributes.  

Knowledge class: Implementation Unit 
 Purpose:  

The unit for packaging your implementation.  
Attributes: 

Implementation Unit Name 
Considerations: 

This could be what your customers refer to as a “feature”, or if 
your product is a consumer item then it is possibly called a 
“function”. The choice of implementation unit is driven by a 
combination of your implementation technology and your 
implementation process. When you tailor this part of the 
knowledge model you might find that you replace 
implementation unit with several classes. The important issue is 
that you can unambiguously trace your implementation unit 
back to the relevant requirements. 

Knowledge class: Naming Conventions & Data Dictionary 
 Purpose:  

A dictionary that defines the meaning of terms used within the 
requirements. This dictionary will be added to throughout the 
project to include terms that are related to the implementation. 
This is a global class and could have an Relationship with any 
of the other classes in your knowledge model. Consistent use of 
the same terminology – as defined in the dictionary- helps to 
minimise misunderstandings 

Attributes: 
Name of the Term 
Definition of the Term 

Suggested Implementation: 
Section 4 of the Template; this should be in the form of a 
glossary. Along with the work context and the product context 
this provides a good introduction for new team members.  In 
Section 7 of the Template; there is a formal dictionary that 
defines all of the data in the inputs, outputs and attributes 
within the scope of the work and the scope of the product. The 
dictionary provides a mechanism for connecting business 
terminology and implementation terminology. 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  7 

Knowledge class: Non-functional Requirement 
Purpose:  

A Non-functional requirement is a quality that the product must 
have. For example it must be fast, attractive, secure, 
customizable, maintainable, portable, etc. Non-functional 
requirements types are Look and Feel, Usability, Performance 
and Safety, Operational Environment, Maintainability and 
Portability, Security, Cultural and Political, Legal. For more 
about non-functional requirements refer to the Volere 
requirements template at http://www.volere.co.uk 

Attributes: 
This is a sub-type of Atomic Requirement and inherits its 
attributes.  

Considerations: 
The non-functional properties are important if the user or buyer 
is to accept the product.  

Suggested Implementation: 
Sections 10 though 17 of the Template. It is vital that you give 
all non-functional requirements the correct fit criterion. 

Knowledge class: Product Scope 
Purpose:  

The product scope identifies the boundaries of the product that 
will be built. The scope is a summary of the boundaries of all 
the product use cases. 

Attributes: 
User Names 
User Roles 
Other Adjacent Systems 
Interface descriptions 

Suggested Implementation: 
Section 8 of the Template. This should preferably be a diagram, 
either a use case diagram or a product context model. Some 
interface descriptions might be supported by prototypes or 
simulations. 

Knowledge class: Product Use Case 
Purpose:  

A Product Use Case (PUC) is a functional grouping of 
requirements that will be implemented by the product. It is that 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  8 

part of the business use case that you decide to build as a 
product. 

Attributes: 
Product Use Case Name 
Product Use Case Identifier 
Product Use Case Description 
Product Use Case Users 
Product Use Case Inputs 
Product Use Case Outputs 
Product Use Case Stories 
Product Use Case Scenarios 
Product Use Case Fit Criterion 
Product Use Case Owner 
Product Use Case Benefit 
Product Use Case Priority 

Suggested Implementation: 
Section 8 of the Template. The product use cases are a good 
mechanism for communication within the extended project 
team. PUC’s might take the form of models, user stories, 
scenarios or anything else that suits the people involved. 
Whatever the type of representation the details of the PUC 
should be within the boundaries declared by the PUC inputs 
and outputs. 

Knowledge class: Project Goal 
Purpose:  

To understand why the company is making an investment in 
doing this project.  

Attributes: 
Project Goal Description 
Business Advantage 
Measure of Success  
 Note that there might be several project goals. 

Suggested Implementation: 
Section 1 of the Template. This is the basis for making 
decisions about scope, relevance and priority. It is the guiding 
light for the project. Ideally this should be defined as part of the 
project initiation. The project goals should be unambiguously 
defined and agreed before putting effort into discovering 
detailed requirements.  



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  9 

Knowledge class: Stakeholder 
Purpose:  

Identifies all the people, roles, organisations who have an 
interest in the project. This covers the project team, direct users 
of the product, other indirect beneficiaries of the product, 
specialists with technical skills needed to build the product, 
external organisations with rules or laws pertaining to the 
product, external organisations with specialist knowledge about 
the product's domain, opponents of the product, producers of 
competitive products. 

Attributes: 
Stakeholder Role 
Stakeholder Name 
Types of Knowledge 
Necessary Participation 
Appropriate Trawling Techniques 
Contact information eg. email address.  

Suggested Implementation: 
Section 2 of the Template. Use the stakeholder map and 
stakeholder analysis template to define the attributes for each 
stakeholder.  

Knowledge class: System Architecture Component 
Purpose:  

A piece of technology, software, hardware or abstract container, 
that influences, facilitates and /or places constraints on the 
design. 

Knowledge class: Technological Requirement 
Purpose: 

A technological requirement exists because of the technology 
chosen for the implementation. These requirements are there to 
serve the purposes of the technology, and are not originated by 
the business.  

Attributes: 
This is a sub type of Atomic Requirement and inherits its 
attributes. 

Considerations:  
The technological requirements should only be considered 
when you know the technological environment. They can be 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  10 

recorded alongside the business requirements, but it must be 
clear which is which.  

 

Knowledge class: Test 
 Purpose:  

The design for test is the result of a tester reviewing a 
requirement's fit criterion (precise measure) and designing a 
cost effective test to prove whether or not a solution meets the 
fit criterion. 

Considerations: 
You might consider having your testing people write the test 
cases as the requirements are being written. Also consider that 
the requirement’s fit criterion is the basis of the test case.  

Knowledge class: Work Scope 
Purpose:  

Defines the boundary of the investigation necessary to discover, 
invent, understand and identify the requirements for the 
product.  

Attributes: 
Adjacent Systems 
Input Dataflows 
Output Dataflows 
Work Context Description 

Considerations:  
This should be recorded publicly as our experience is that it is 
the most widely referenced document. A context model is an 
effective communication tool for defining the work context.  

Suggested Implementation: 
Section 7 of the Template. This is best illustrated with a context 
model or a use case model.  

Relationship: Business boundary 
Purpose: 

To partition the work context according to the functional reality 
of the business. 

Multiplicity: 
For each Business Event there is one Work Context. 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  11 

For each Work Context there are potentially many Business 
Events. 

 

Relationship: Business relevancy 
Purpose: 

To ensure that there are relevant business connections between 
the scope of the investigation, the project purpose and the 
stakeholders 

Multiplicity: 
The trinary Relationship is as follows: 
For each instance of 
      one Work Context and 
      one Stakeholder there are one or more Project Purposes. 
For each instance of 
      one Project Purpose and 
      one Stakeholder there is one Work Context. 
For each instance of 
      one Project Purpose and 
      one Work Context there are potentially many Stakeholders. 

 

Relationship: Business responding 
Purpose: 

To reveal which business use cases are used to respond to the 
business event.  

Multiplicity: 
For each Business Event there is usually one, but could be more 
than one Business Use Cases.  
For each Business Use Case there can only be one triggering 
Business Event.  

 

Relationship: Business tracing 
Purpose: 

To keep track of which requirements are generated by which 
business use cases. Note that this is a many to many 
Relationship because a given requirement might exist in more 
than one business use case. 

Multiplicity: 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  12 

For each Business Use Case there are potentially many Atomic 
Requirements. 
For each Atomic Requirement there are potentially many 
Business Use Cases. 

Relationship: Implementing 
Purpose: 

To keep track of which product use cases are implemented in 
which implementation units. 

Multiplicity: 
For each Product Use Case there are potentially many 
Implementation Units. 
For each Implementation Unit there are potentially many 
Product Use Cases. 

Relationship: Owning 
Purpose: 

To keep track of which stakeholders are the source of which 
requirements. The idea of “ownership” is to identify a person 
who takes the responsibility for helping to get answers to 
questions about the requirement.  

Multiplicity: 
For each Requirement there is one Stakeholder. 
For each Stakeholder there are potentially many Requirements. 

Relationship: Product partitioning 
Purpose: 

All the product use cases together form the complete scope of 
the product. The product scope is partitioned into a number of 
product use cases. 

Multiplicity: 
For each  Product Use Case there is one Product Scope. 
For each  Product Scope there are potentially many Product Use 
Cases. 

Relationship: Product tracing 
Purpose: 

To keep track of which requirements are contained in which 
product use cases for the purpose of traceability and dealing 
with change. 



Copyright The Atlantic Systems Guild                         Requirements Knowledge V2  13 

Multiplicity: 
For each Requirement there are potentially many Product Use 
Cases. 
For each Product Use Case there are potentially many Atomic 
Requirements. 

Relationship: Supporting 
Purpose: 

To keep track of which systems architecture components 
support which implementation units for the purpose of tracking 
tests and assessing impact of change. 

Multiplicity: 
For each System Architecture Component there are potentially 
many Implementation Units. 
For each Implementation Unit there are potentially many 
System Architecture Components. 

Relationship: Testing 
Purpose: 

To keep track of which atomic requirements or PUC related 
groups of atomic requirements are covered by which tests. 

Multiplicity: 
For each Test there are potentially many Atomic Requirements. 

 


